
Version 2

Syllabus
Cambridge IGCSE™

Computer Science 0478
Use this syllabus for exams in 2023, 2024 and 2025.
Exams are available in the June and November series.
Exams are also available in the March series in India only.

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

33www.cambridgeinternational.org/igcseBack to contents page

Pseudocode
The following information sets out how pseudocode will appear within the examinations of this syllabus. The
numbers and letters that appear at the end of a sub-heading provide a cross reference to the relevant section of the
subject content.

General style

Font style and size
Pseudocode is presented in Courier New. The size of the font will be consistent throughout.

Indentation
Lines are indented by four spaces to indicate that they are contained within a statement in a previous line. Where it
is not possible to fit a statement on one line any continuation lines are indented by two spaces from the margin. In
cases where line numbering is used, this indentation may be omitted. Every effort will be made to make sure that
code statements are not longer than a line of code, unless this is necessary.

Note that the THEN and ELSE clauses of an IF statement are indented by only two spaces. Cases in CASE
statements are also indented by only two spaces.

Case
Keywords are in upper case, e.g. IF, REPEAT, PROCEDURE.

Identifiers are in mixed case with upper case letters indicating the beginning of new words, e.g.
NumberOfPlayers.

Meta-variables – symbols in the pseudocode that should be substituted by other symbols are enclosed in angled
brackets < >.

Example – meta-variables

REPEAT

 <Statements>

UNTIL <Condition>

Lines and line numbering
Each line representing a statement is numbered. However, when a statement runs over one line of text, the
continuation lines are not numbered.

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

34 www.cambridgeinternational.org/igcse Back to contents page

Comments
Comments are preceded by two forward slashes //. The comment continues until the end of the line. For
multi-line comments, each line is preceded by //.

Normally the comment is on a separate line before, and at the same level of indentation as, the code it refers to.
Occasionally, however, a short comment that refers to a single line may be at the end of the line to which it refers.

Example – comments

// This procedure swaps

// values of X and Y

PROCEDURE SWAP(X : INTEGER, Y : INTEGER)

 Temp ← X // temporarily store X

 X ← Y

 Y ← Temp

ENDPROCEDURE

Variables, constants and data types

Basic data types (8.1.2)
The following keywords are used to designate basic data types:

	• INTEGER		 a whole number
	• REAL		 a number capable of containing a fractional part
	• CHAR		 a single character
	• STRING		 a sequence of zero or more characters
	• BOOLEAN		 the logical values TRUE and FALSE

Literals
Literals of the above data types are written as follows:

	• Integer 		 written as normal in the denary system, e.g. 5, –3
	• Real		� always written with at least one digit on either side of the decimal point, zeros being added

if necessary, e.g. 4.7, 0.3, –4.0, 0.0
	• Char 		 a single character delimited by single quotes, e.g. ꞌxꞌ, ꞌcꞌ, ꞌ@ꞌ
	• String 		� delimited by double quotes. A string may contain no characters (i.e. the empty string),

e.g. "This is a string", ""
	• Boolean 		 TRUE, FALSE

Identifiers
Identifiers (the names given to variables, constants, procedures and functions) are in mixed case using Pascal case,
e.g. FirstName. They can only contain letters (A–Z, a–z) and digits (0–9). They must start with a capital letter
and not a digit. Accented letters and other characters, including the underscore, should not be used.

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

35www.cambridgeinternational.org/igcseBack to contents page

As in programming, it is good practice to use identifier names that describe the variable, procedure or function to
which they refer. Single letters may be used where these are conventional (such as i and j when dealing with array
indices, or X and Y when dealing with coordinates) as these are made clear by the convention.

Keywords should never be used as identifier names.

Identifiers should be considered case insensitive, for example, Countdown and CountDown should not be used
as separate variables.

Variable declarations (8.1.1)
Declarations are made as follows:
DECLARE <identifier> : <data type>

Example – variable declarations

DECLARE Counter : INTEGER

DECLARE TotalToPay : REAL

DECLARE GameOver : BOOLEAN

Constants (8.1.1)
It is good practice to use constants if this makes the pseudocode more readable, and easier to update if the value of
the constant changes.

Constants are declared by stating the identifier and the literal value in the following format:
CONSTANT <identifier> ← <value>

Example – CONSTANT declarations

CONSTANT HourlyRate ← 6.50

CONSTANT DefaultText ← "N/A"

Only literals can be used as the value of a constant. A variable, another constant or an expression must never be
used.

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

36 www.cambridgeinternational.org/igcse Back to contents page

Assignments
The assignment operator is ←

Assignments should be made in the following format:
<identifier> ← <value>

The identifier must refer to a variable (this can be an individual element in a data structure such as an array or
an abstract data type). The value may be any expression that evaluates to a value of the same data type as the
variable.

Example – assignments

Counter ← 0

Counter ← Counter + 1

TotalToPay ← NumberOfHours * HourlyRate

Arrays

Declaring arrays (8.2.1)
Arrays are fixed-length structures of elements of identical data type, accessible by consecutive index numbers. It
is good practice to explicitly state what the lower bound of the array (i.e. the index of the first element) is because
this defaults to either 0 or 1 in different systems. Generally, a lower bound of 1 will be used.

Square brackets are used to indicate the array indices.

1D and 2D arrays are declared as follows (where l, l1, l2 are lower bounds and u, u1, u2 are upper bounds):

DECLARE <identifier> : ARRAY[<l>:<u>] OF <data type>

DECLARE <identifier> : ARRAY[<l1>:<u1>, <l2>:<u2>] OF <data type>

Example – array declaration

DECLARE StudentNames : ARRAY[1:30] OF STRING

DECLARE NoughtsAndCrosses : ARRAY[1:3, 1:3] OF CHAR

Using arrays (8.2.1)
In the main pseudocode statements, only one index value is used for each dimension in the square brackets.

Example – using arrays

StudentNames[1] ← "Ali"

NoughtsAndCrosses[2,3] ← ꞌXꞌ

StudentNames[n+1] ← StudentNames[n]

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

37www.cambridgeinternational.org/igcseBack to contents page

An appropriate loop structure is used to assign the elements individually.

Example – assigning a group of array elements

FOR Index ← 1 TO 30

 StudentNames[Index] ← ""

NEXT Index

Common operations

Input and output (8.1.3)
Values are input using the INPUT command as follows:
 INPUT <identifier>

The identifier should be a variable (that may be an individual element of a data structure such as an array).

Values are output using the OUTPUT command as follows:
 OUTPUT <value(s)>

Several values, separated by commas, can be output using the same command.

Examples – INPUT and OUTPUT statements

INPUT Answer

OUTPUT Score

OUTPUT "You have ", Lives, " lives left"

Arithmetic operations (8.1.4 (f))
Standard arithmetic operator symbols are used:

+ 		 addition
– 		 subtraction
* 		 multiplication
/ 		 division
^ 		 raised to the power of

Examples – arithmetic operations

Answer ← Score * 100 / MaxMark

Answer ← Pi * Radius ^ 2

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

38 www.cambridgeinternational.org/igcse Back to contents page

The integer division operators MOD and DIV can also be used.

DIV(<identifier1>, <identifier2>)

Returns the quotient of identifier1 divided by identifier2 with the fractional part discarded.

MOD(<identifier1>, <identifier2>)

Returns the remainder of identifier1 divided by identifier2

The identifiers are of data type integer.

Examples – MOD and DIV

DIV(10, 3) returns 3

MOD(10, 3) returns 1

Multiplication and division have higher precedence over addition and subtraction (this is the normal mathematical
convention). However, it is good practice to make the order of operations in complex expressions explicit by using
parentheses.

Logical operators (8.1.4 (f))
The following symbols are used for logical operators:

=		 equal to
<		 less than
<=		 less than or equal to
>		 greater than
>=		 greater than or equal to
<>		 not equal to

The result of these operations is always of data type BOOLEAN.

In complex expressions, it is advisable to use parentheses to make the order of operations explicit.

Boolean operators (8.1.4 (f))
The only Boolean operators used are AND, OR and NOT. The operands and results of these operations are always of
data type BOOLEAN.

In complex expressions, it is advisable to use parentheses to make the order of operations explicit.

Examples – Boolean operations

IF Answer < 0 OR Answer > 100

 THEN

 Correct ← FALSE

 ELSE

 Correct ← TRUE

ENDIF

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

39www.cambridgeinternational.org/igcseBack to contents page

String operations (8.1.4 (e))
LENGTH(<identifier>)

Returns the integer value representing the length of string. The identifier should be of data type string.

LCASE(<identifier>)

Returns the string/character with all characters in lower case. The identifier should be of data type string or char.

UCASE(<identifier>)

Returns the string/character with all characters in upper case. The identifier should be of data type string or char.

SUBSTRING(<identifier>, <start>, <length>)

Returns a string of length length starting at position start. The identifier should be of data type string, length
and start should be positive and data type integer.

Generally, a start position of 1 is the first character in the string.

Example – string operations

LENGTH("Happy Days") will return 10
LCASE(ꞌWꞌ) will return ꞌwꞌ
UCASE("Happy") will return "HAPPY"
SUBSTRING("Happy Days", 1, 5) will return "Happy"

Other library routines (8.1.7)
ROUND(<identifier>, <places>)
Returns the value of the identifier rounded to places number of decimal places.
The identifier should be of data type real, places should be data type integer.

RANDOM()
Returns a random number between 0 and 1 inclusive.

Example – ROUND and RANDOM

Value ← ROUND (RANDOM() * 6, 0) // returns a whole number between 0 and 6

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

40 www.cambridgeinternational.org/igcse Back to contents page

Selection

IF statements (8.1.4 (b) and 8.1.5)
IF statements may or may not have an ELSE clause.
IF statements without an ELSE clause are written as follows:
	 IF <condition>

	 THEN

	 <statements>

	 ENDIF

IF statements with an ELSE clause are written as follows:

	 IF <condition>

	 THEN

	 <statements>

 	 ELSE

 	 <statements>

	 ENDIF

Note that the THEN and ELSE clauses are only indented by two spaces. (They are, in a sense, a continuation of the
IF statement rather than separate statements.)

When IF statements are nested, the nesting should continue the indentation of two spaces.

Example – nested IF statements

IF ChallengerScore > ChampionScore

 THEN

 IF ChallengerScore > HighestScore

 THEN

 OUTPUT ChallengerName, " is champion and highest scorer"

 ELSE

 OUTPUT Player1Name, " is the new champion"

 ENDIF

 ELSE

 OUTPUT ChampionName, " is still the champion"

 IF ChampionScore > HighestScore

 THEN

 OUTPUT ChampionName, " is also the highest scorer"

 ENDIF

ENDIF

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

41www.cambridgeinternational.org/igcseBack to contents page

CASE statements (8.1.4 (b))
CASE statements allow one out of several branches of code to be executed, depending on the value of a variable.

CASE statements are written as follows:
	 CASE OF <identifier>

	 <value 1> : <statement>

	 <value 2> : <statement>

	 ...

	 ENDCASE

An OTHERWISE clause can be the last case:

	 CASE OF <identifier>

	 <value 1> : <statement>

	 <value 2> : <statement>

	 ...

	 OTHERWISE <statement>

	 ENDCASE

It is best practice to keep the branches to single statements as this makes the pseudocode more readable. Similarly,
single values should be used for each case. If the cases are more complex, the use of an IF statement, rather than a
CASE statement, should be considered.

Each case clause is indented by two spaces. They can be considered as continuations of the CASE statement rather
than new statements.

Note that the case clauses are tested in sequence. When a case that applies is found, its statement is executed, and
the CASE statement is complete. Control is passed to the statement after the ENDCASE. Any remaining cases are
not tested.

If present, an OTHERWISE clause must be the last case. Its statement will be executed if none of the preceding
cases apply.

Example – formatted CASE statement

INPUT Move

CASE OF Move

 ꞌWꞌ : Position ← Position – 10

 ꞌEꞌ : Position ← Position + 10

 ꞌAꞌ : Position ← Position – 1

 ꞌDꞌ : Position ← Position + 1

 OTHERWISE OUTPUT "Beep"

ENDCASE

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

42 www.cambridgeinternational.org/igcse Back to contents page

Iteration

Count-controlled (FOR) loops (8.1.4 (c))
Count-controlled loops are written as follows:
FOR <identifier> ← <value1> TO <value2>

 <statements>

NEXT <identifier>

The identifier must be a variable of data type INTEGER, and the values should be expressions that evaluate to
integers.

The variable is assigned each of the integer values from value1 to value2 inclusive, running the statements
inside the FOR loop after each assignment. If value1 = value2 the statements will be executed once, and if
value1 > value2 the statements will not be executed.

An increment can be specified as follows:
FOR <identifier> ← <value1> TO <value2> STEP <increment>

 <statements>

NEXT <identifier>

The increment must be an expression that evaluates to an integer. In this case the identifier will be assigned
the values from value1 in successive increments of increment until it reaches value2. If it goes past
value2, the loop terminates. The increment can be negative.

Example – nested FOR loops

Total ← 0

FOR Row ← 1 TO MaxRow

 RowTotal ← 0

 FOR Column ← 1 TO 10

 RowTotal ← RowTotal + Amount[Row, Column]

 NEXT Column

 OUTPUT "Total for Row ", Row, " is ", RowTotal

 Total ← Total + RowTotal

NEXT Row

OUTPUT "The grand total is ", Total

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

43www.cambridgeinternational.org/igcseBack to contents page

Post-condition (REPEAT) loops (8.1.4 (c))
Post-condition loops are written as follows:

REPEAT

 <Statements>

UNTIL <condition>

The condition must be an expression that evaluates to a Boolean. The statements in the loop will be executed
at least once. The condition is tested after the statements are executed and if it evaluates to TRUE the loop
terminates, otherwise the statements are executed again.

Example – REPEAT UNTIL statement

REPEAT

 OUTPUT "Please enter the password"

 INPUT Password

UNTIL Password = "Secret"

Pre-condition (WHILE) loops (8.1.4 (c))
Pre-condition loops are written as follows:
WHILE <condition> DO

	 <statements>

ENDWHILE

The condition must be an expression that evaluates to a Boolean. The condition is tested before the statements,
and the statements will only be executed if the condition evaluates to TRUE. After the statements have been
executed the condition is tested again. The loop terminates when the condition evaluates to FALSE.

The statements will not be executed if, on the first test, the condition evaluates to FALSE.

Example – WHILE loop

WHILE Number > 9 DO

 Number ← Number – 9

ENDWHILE

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

44 www.cambridgeinternational.org/igcse Back to contents page

Procedures and functions

Procedures and functions are defined at the start of the code.

Defining and calling procedures (8.1.6 (b))
A procedure with no parameters is defined as follows:
PROCEDURE <identifier>

 <statements>

ENDPROCEDURE

A procedure with parameters is defined as follows:
PROCEDURE <identifier>(<param1>:<datatype>, <param2>:<datatype>...)

 <statements>

ENDPROCEDURE

The <identifier> is the identifier used to call the procedure. Where used, param1, param2, etc. are
identifiers for the parameters of the procedure. These will be used as variables in the statements of the procedure.

Procedures should be called as follows:
CALL <identifier>

CALL <identifier>(Value1,Value2...)

These calls are complete program statements.

When parameters are used, Value1, Value2... must be of the correct data type as in the definition of the
procedure.

When the procedure is called, control is passed to the procedure. If there are any parameters, these are substituted
by their values, and the statements in the procedure are executed. Control is then returned to the line that follows
the procedure call.

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

45www.cambridgeinternational.org/igcseBack to contents page

Example – use of procedures with and without parameters

PROCEDURE DefaultLine

 CALL LINE(60)

ENDPROCEDURE

PROCEDURE Line(Size : INTEGER)

 DECLARE Length : INTEGER

 FOR Length ← 1 TO Size

 OUTPUT '-'

 NEXT Length

ENDPROCEDURE

IF MySize = Default

 THEN

 CALL DefaultLine

 ELSE

 CALL Line(MySize)

ENDIF

Defining and calling functions (8.1.6 (b))
Functions operate in a similar way to procedures, except that in addition they return a single value to the point at
which they are called. Their definition includes the data type of the value returned.

A function with no parameters is defined as follows:
FUNCTION <identifier> RETURNS <data type>

 <statements>

ENDFUNCTION

A function with parameters is defined as follows:
FUNCTION <identifier>(<param1>:<datatype>, <param2>:<datatype>...) RETURNS <data
type>

 <statements>

ENDFUNCTION

The keyword RETURN is used as one of the statements within the body of the function to specify the value to be
returned. Normally, this will be the last statement in the function definition.

Because a function returns a value that is used when the function is called, function calls are not complete program
statements. The keyword CALL should not be used when calling a function. Functions should only be called as part
of an expression. When the RETURN statement is executed, the value returned replaces the function call in the
expression and the expression is then evaluated.

Cambridge IGCSE Computer Science 0478 syllabus for 2023, 2024 and 2025.  Details of the assessment

46 www.cambridgeinternational.org/igcse Back to contents page

Example – definition and use of a function

FUNCTION SumSquare(Number1:INTEGER, Number2:INTEGER) RETURNS INTEGER

 RETURN Number1 * Number1 + Number2 * Number2

ENDFUNCTION

OUTPUT "Sum of squares = ", SumSquare(10, 20)

File handling

Handling files (8.3.2)
It is good practice to explicitly open a file, stating the mode of operation, before reading from or writing to it. This is
written as follows:
OPENFILE <File identifier> FOR <File mode>

The file identifier will be the name of the file with data type string. The following file modes are used:

	• READ 	 for data to be read from the file
	• WRITE 	� for data to be written to the file. A new file will be created and any existing data in the file will be

lost.

A file should be opened in only one mode at a time.

Data is read from the file (after the file has been opened in READ mode) using the READFILE command as
follows:
READFILE <File Identifier>, <Variable>

When the command is executed, the data item is read and assigned to the variable.

Data is written into the file after the file has been opened using the WRITEFILE command as follows:
WRITEFILE <File identifier>, <Variable>

When the command is executed, the data is written into the file. Files should be closed when they are no longer
needed using the CLOSEFILE command as follows:
CLOSEFILE <File identifier>

Example – file handling operations

This example uses the operations together, to copy a line of text from FileA.txt to FileB.txt
DECLARE LineOfText : STRING

OPENFILE FileA.txt FOR READ

OPENFILE FileB.txt FOR WRITE

READFILE FileA.txt, LineOfText

WRITEFILE FileB.txt, LineOfText

CLOSEFILE FileA.txt

CLOSEFILE FileB.txt

	1 Why choose this syllabus?
	2 Syllabus overview

	Aims
	Content overview
	Assessment overview
	Assessment objectives
	3 Subject content

	Computer systems
	Algorithms, programming and logic
	4 Details of the assessment

	Paper 1 – Computer Systems
	Paper 2 – Algorithms, Programming and Logic
	Mathematical requirements
	Flowchart symbols
	Logic gate symbols
	Pseudocode
	Command words
	5 What else you need to know
	Before you start
	Making entries
	After the exam
	How students and teachers can use the grades
	Grade descriptions
	Changes to this syllabus for 2023, 2024 and 2025

